
Distributions of absolute central moments for random walk surfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 1175

(http://iopscience.iop.org/0305-4470/29/6/006)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 1175–1185. Printed in the UK

Distributions of absolute central moments for random walk
surfaces

A J McKane† and R K P Zia‡
† Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, UK
‡ Center for Stochastic Processes in Science and Engineering and Department of Physics, Virginia
Polytechnic and State University, Blacksburg, Virginia 24061, USA

Received 4 September 1995

Abstract. We study periodic Brownian paths, wrapped around the surface of a cylinder. One
characteristic of such a path is its width square,w2, defined as its variance. Though the average
of w2 over all possible paths is well known, its full distribution function was investigated only
recently. Generalizingw2 to w(N), defined as theN th power of themagnitudeof the deviations
of the path from its mean, we show that the distribution functions of these also scale and obtain
the asymptotic behaviour for both large and smallw(N).

1. Introduction

Of all the quantities which characterize a near-planar surface, the width,w, defined as the
standard deviation of the position of the surface, is probably the most frequently studied.
If this surface is a member of a Gaussian ensemble, then〈w2〉, the ensemble average of
w2, is a well known function of the parameters of the Gaussian as well as the size of the
surface. In particular, if the surface is a one-dimensional object of lengthT , then〈w2〉 ∝ T ,
as T → ∞. In a recent paper [1] it was pointed out that the entiredistribution of w2,
rather than merely the average, would provide a better picture of the surface. Indeed, this
distribution was shown to obey scaling and the universal scaling function was computed.
An analogue in critical phenomena is the difference between measuring a single critical
exponent and finding data collapse in a range of parameter space. It is indisputable that the
latter gives far more details of the system than the former.

In a similar vein, one may extract further information from the fluctuating surfaces
by analysing moments or cumulants other than the second. For Gaussian surfaces, the
averagesof these can be related to〈w2〉, but theirdistributions are less trivial. Unlike the
case forw2, the Laplace transforms of these distributions are associated with non-Gaussian
field theories. Equivalently, for one-dimensional surfaces, we must now deal with quantum
anharmonic oscillators. In this paper we generalize the analysis begun in [1] and show that
these distributions also scale, while their universal functions can be found in the asymptotic
regimes where the argument is small or is large.

In order to have sufficient analytical control over the fluctuations, the one-dimensional
surfaces in [1] were modelled by Brownian paths{ht } in the ‘time’ interval 06 t 6 T ,
with periodic boundary conditions. Thus, a surface may be thought of as a line wrapped
around a cylinder of circumferenceT . By identifying the continuous pathht as the height
of a surface, the ‘width square’ is a simple functional quadratic inht :

w2[ht ] = ψ2
t = [

ht − ht
]2

(1)
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1176 A J McKane and R K P Zia

where the average,f , of a functionf is defined as

f (ht ) = 1

T

∫ T

0
dt f (ht ) (2)

and whereψt ≡ ht − ht is the usual deviation from the ‘average height’. Being
Brownian paths, the weight of eachht is a simple Gaussian, i.e. exp{− ∫ T

0 dt [ 1
2ḣ

2
t ]}, where

ḣt = dht/dt . For the ensemble average, denoted by〈. . .〉, one must sum over all appropriate
paths, i.e. perform functional integrals (or path-integrals [2]) over periodic functionsht .
Since none of the quantities we encounter will depend on the overall height, we may just
as well sum over{ψt }, with special attention paid to the constraint

∫ T
0 dt ψt = 0. With this

set-up, it is standard practice to show that〈w2〉 = T/12.
The key to calculating the probability densityP(w2; T ) was to express it the form of a

path-integral and note that its Laplace transform can be computed explicitly [1]. Beginning
with

P(w2; T ) =
〈
δ

(
w2 − [

ht − ht
]2

)〉
= N

∫
D[h]δ

(
w2 − [

ht − ht
]2

)
exp

(
−T ḣ2

t /2
)

(3)

where N is a normalization constant, one can easily show that it has the scaling form
P(w2; T ) = 〈w2〉−18(x), wherex is the scaling variablew2/〈w2〉. Inverting the exact
result for its Laplace transform

G(λ; T ) =
√
λT/2

sinh(
√
λT/2)

(4)

the associated scaling function is obtained:

8(x) = π2

3

∞∑
n=1

(−1)n−1n2 exp

(
−π

2

6
n2x

)
(5)

from which the asymptotic properties can be found.
The aim of this paper is to extend these results to arbitrary absolute central moments:

w(N)[ht ] ≡ |ψt |N = |ht − ht |N. (6)

Notice that, for evenN , these are precisely the central moments associated with a particular
configurationht . Using the absolute values ofψ , it is possible to study arbitraryN > 0,
and these are known as the absolute central moments (associated with a specific path). The
outline of the paper is as follows. In section 2, a brief, self-contained, summary of the
formalism for this general case is included. Then, we show thatPN(w

(N); T ) does indeed
scale. Analytic expressions for the asymptotic behaviour of the scaling function are found,
for large and small arguments, in sections 3 and 4 respectively. We conclude with some
general comments in section 5.

2. Scaling form for the probability distribution

Following [1], let us express the full distribution ofw(N) as

PN(w
(N); T ) = N

∫
D[h]δ

(
w(N) − |ht − ht |N

)
exp

(
−T ḣ2

t /2
)
. (7)
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Its Laplace transform, which generates the moments of (7), is

GN(λ; T ) =
∫ ∞

0
dζ PN(ζ ; T )e−λζ

= N
∫

D[h] exp
[
−T ḣ2

t /2 − λ|ht − ht |N
]
. (8)

Writing this expression in terms ofψt and using the conditionGN(0; T ) = 1 to determine
the normalization constantN , we obtain

GN(λ; T ) =
∫ D[ψ ]δ(

∫ T
0 dt ψt ) exp− ∫ T

0 dt [ 1
2ψ̇

2
t + λ

T
|ψt |N ]∫ D[ψ ]δ(

∫ T
0 dt ψt ) exp− ∫ T

0 dt [ 1
2ψ̇

2
t ]

. (9)

Apart from the constraint
∫ T

0 dt ψt = 0, this is the imaginary time propagator for a quantum-
mechanical particle moving in the potential|ψ |N . As we will see in section 4, this
connection will be exploited in the study of the asymptotics ofPN for smallw(N).

To elucidate the general structure ofPN and its scaling properties, it is useful to define
a dimensionless variableτ = t/T and then to make the following rescaling:

χτ = T −1/2ψτ . (10)

Defining

µ = NλT N/2 (11)

we have, for the generating function,

GN(λ; T ) =
∫ D[χ ]δ(

∫ 1
0 dτ χτ ) exp− ∫ 1

0 dτ [ 1
2χ̇

2
τ + (µ/N)|χτ |N ]∫ D[χ ]δ(

∫ 1
0 dτ χτ ) exp− ∫ 1

0 dτ [ 1
2χ̇

2
τ ]

(12)

where χ̇τ now means dχτ/dτ . This expression shows thatGN(λ; T ) is a function ofµ
only, so that we may write

gN(µ) ≡ GN(λ; T ). (13)

ExpressingPN(w(N); T ) as the inverse Laplace transform ofg:

PN(w
(N); T ) =

∫ i∞

−i∞

dλ

2π i
gN(NλT

N/2) exp(λw(N))

= 1

NT N/2

∫ i∞

−i∞

dµ

2π i
gN(µ) exp

(
µ

N

w(N)

T N/2

)
(14)

we see thatT N/2PN(w(N); T ) is a function ofw(N)/T N/2 only. To put this in the scaling
form, we simply note that〈w(N)〉 is proportional toT N/2:

〈w(N)〉 =
∫ ∞

0
dζ ζPN(ζ ; T )

= −dGN

dλ

∣∣∣∣
λ=0

= −NT N/2 d

dµ
gN(µ)

∣∣∣∣
µ=0

. (15)

Using this result, (14) may be written as

PN(w
(N); T ) = 1

〈w(N)〉8N(x) (16)
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where

x ≡ w(N)/〈w(N)〉 (17)

and

8N(x) = |g′
N(0)|

∫ i∞

−i∞

dµ

2π i
gN(µ) exp(µx|g′

N(0)|). (18)

Equations (16) and (17) are an expression of the fact thatPN scales. From (18) one sees
that, in order to find an explicit form for8N(x), the functiongN(µ) has to be determined.
For N 6= 2 this can only be determined in special limits. Nevertheless, as we shall see in
the next two sections, one can go quite a long way to finding the limiting forms of8N for
large and smallx using path-integral techniques.

We end this section by noting that, since we have Brownian paths, the ensemble averages
of the moments〈w(N)〉 are quite simple. For evenN , they are(N − 1)!!(T /12)N/2. For
arbitraryN , we rely on standard analytic continuation techniques to arrive at

|g′
N(0)| = 0

(
N + 1

2

) /
{6N/2Nπ1/2}. (19)

However, we will continue to writeg′
N(0), both for convenience and to emphasize its role.

3. The scaling function for largex

It is not surprising that the behaviour of8N(x) for x � 1 is controlled by the singularities
of gN(µ) for near the origin ofµ. In theN = 2 case, these singularities are simple poles
on the negative real axis. In general, we expect a branch cut and its discontinuity near
µ = 0 to dominate the asymptotics of8N . One approach is to compute these singularities,
using techniques of asymptotic expansion around instanton solutions [3], followed by an
inversion of the Laplace transform. Alternatively, one can insert (12) into (18), find the
saddle point in the combined space of{µ, χτ } and perform the Gaussian integrations over
small variations in its neighbourhood. We shall follow the latter route, which seems to be
simpler.

As will be seen, we are able to compute explicitly only the leading two terms in ln8N ,
i.e. x2/N and lnx. Thus, we will drop all proportionality constants, for clarity, when writing
8N . In particular, the denominator of (12) is clearlyx independent and will be suppressed,
though its role in regulating the Gaussian integrations is obviously essential. So, consider

8N(x) ∝
∫

dµD[χ ]δ

( ∫ 1

0
dτ χτ

)
exp

{
µx|g′

N(0)| −
∫ 1

0
dτ

[
1

2
χ̇2
τ + µ

N
|χτ |N

] }
. (20)

The attentive reader may object to the factor i in (18) being dropped as well, since8N

should be real. A careful analysis will reveal that the functional determinant carries this
factor, i.e. the contour forµ near the saddle point will be parallel to the imaginary axis.

From (20), we first seek the saddle point, to be denoted by{−M,Xτ } in {µ, χτ } space.
Note that we have anticipated this point to be on the negative realµ axis, so thatM will
turn out to be real and positive. Setting to zero the variation of the exponent in (20) with
respect toµ andχτ , we have the equations for the paths which dominate the path-integral:

Nx|g′
N(0)| =

∫ 1

0
dτ |Xτ |N (21)

and

Ẍτ +M sgn(Xτ )|Xτ |(N−1) = 0. (22)
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Note that, in order to ignore the singularity atX = 0, we must restrict our attention to
N > 1 here. The latter being an equation of motion for a classical particle of unit mass
moving in a potentialV (X) = M

N
|X|N , these can be solved easily. The importance of

M > 0 is also now evident, since periodicχτ ’s would have been otherwise impossible.
Finally, the constraint

∫ 1
0 dτ χτ = 0 can be satisfied trivially.

Integrating (22) once, we have

1

2
Ẋ2
τ + M

N
|Xτ |N = ε (23)

whereε is a constant, representing the total energy in the mechanical analogy. Assigning
τ = 0 to the point of maximum amplitude (and so zero velocity), we set

ε = M

N
XN0 (24)

whereX0 > 0. Equation (23) can be integrated again in the usual manner, exploiting both
the periodic boundary conditions and the constraint. Clearly, we need to focus on only a
quarter of the period, so that

1
4 = X

(2−N)/2
0 (N/2M)1/2

∫ 1

0
dξ (1 − ξN)−1/2 (25)

whereξτ ≡ Xτ/X0. The integral is proportional to the beta functionB(1/N, 1
2), which we

will denote simply asB. Now we have a relation betweenM andX0:

X
(N−2)
0 = 8B2

NM
. (26)

Inserting this into equation (21), eliminating dτ in favour of dX/Ẋ and using (23), we have

Nx|g′
N(0)| = 4

∫ X0

0
(dX/Ẋ)|X|N (27)

=
(

8XN+2
0

MN

)1/2

B(1 + 1/N, 1
2). (28)

Using B(1 + α, β) = B(α, β)α/(α + β), we find bothX0 andM in terms of the scaling
variablex:

X0 = {N( 1
2N + 1)x|g′

N(0)|}1/N (29)

and

M =
(

8B2

N

)
{N( 1

2N + 1)x|g′
N(0)|}(2−N)/N . (30)

With all parameters of the saddle point explicitly determined, we evaluate the
exponential in (20), i.e. the total ‘action’. The result is−MNx|g′

N(0)|/2, so that the
leading asymptotic behaviour of8N is

8N(x) ∼ exp{−SNx2/N } (31)

SN = 4B2{N( 1
2N + 1)}(2−N)/N |g′

N(0)|(2/N). (32)

ForN = 2, B = π and, from (19),|g′
N(0)| = 1

24, so that we recover the result in (5).
Next, we turn to the computation of the prefactor, for which it is necessary to study the

Gaussian fluctuations about the saddle point(−M,Xτ ).
To accomplish this, we writeµ = −M + µ̂ andχτ = Xτ + χ̂τ in (20) and shift the

integration to(µ̂, χ̂τ ). Expecting the integrals to be dominated by small(µ̂, χ̂τ ), we expand
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the argument of the exponential to second order in these fluctuations. The zeroth order is
given above in (31) while the first order vanishes by the choice of the saddle point. At the
second order, the result is the quadratic form

− µ̂

∫ 1

0
dτ sgn(Xτ )|Xτ |(N−1)χ̂τ + 1

2

∫ 1

0
dτ χ̂τMχ̂τ (33)

whereM is the operator

M = − d2

dτ 2
−M(N − 1)|Xτ |(N−2). (34)

Note that, strictly speaking, we should imposeN > 2, so that the singularity atX = 0 can
be ignored here also.

Before carrying out the integration over(µ̂, χ̂τ ), we discuss several important points.
First, note thatM is a Hermitian, Schr̈odinger-like operator. It can be diagonalized,

and, since our problem is based on a finite interval with periodic boundary conditions, it
has a real, discrete spectrum with real, periodic eigenmodes. Thus,χ̂ can be expanded
in terms of these modes and the functional integral

∫ D[χ̂ ] can be defined as over the
amplitudes in this expansion. We will demonstrate that there is a single zero eigenvalue,
associated with a zero mode, which must be handled with some care. DefiningM′ to be
the operator (34)restricted to the subspace orthogonal to this mode, we will argue that the
spectrum ofM′ is positive, so that its inverse is well defined and the Gaussian integration
in (33) over these modes is simple. Furthermore, the productM|Xτ |(N−2) in (34) can be
written as(MX(N−2)

0 )|ξτ |(N−2). But, according to (26), this quantity is independent ofx,
so that the spectra of bothM and M′ are alsox-independent. Thus, the result of the
Gaussian integration, which involves detM′, is alsox-independent. Since we are dropping
all proportionality constants in this study, this factor will be neglected.

Second, we will show that the zero mode is also absent from the off-diagonalµ̂ − χ̂

part. As a result, at the quadratic level, theχ̂ integration leads to a distribution for̂µ of
the form exp(Pµ̂2/2), where

P =
∫

dτ dτ ′ |Xτ |(N−1)M′−1|Xτ ′ |(N−1) (35)

is positive. To make sense of performing such an integral (overµ̂), recall that the contour in
the µ̂-plane is parallel to the imaginary axis, by definition of the inverse Laplace transform.
We have simply chosen to have it run through a saddle point on the real axis:µ = −M.
Thus, it is entirely consistent to choosêµ to be pure imaginary, so that not only is the
Gaussian integral well defined, but also the right-hand side of (20) is now real. Further, we
may again useXτ = X0ξτ to extract the sole dependence ofP on x, given that neitherM′

nor ξ are functions ofx. As a result, the integration overµ leads to a factor proportional
to

1/
√

P ∝ X
(1−N)
0 . (36)

Third, for Schr̈odinger problems in one dimension, the energy levels are non-degenerate,
unlessits potential is a constant. The implication for us is that, except for theN = 2 case,
the spectrum ofM is non-degenerate. Further, since our interval is finite, the spectrum
is discrete, with eigenvalues increasing monotonically with the number of nodes in the
eigenfunction. Now, the constraintδ(

∫ 1
0 dτ χτ ) must clearly be satisfied by botĥχ and the

eigenfunctions. Therefore, the latter must have an even number (2n > 2) of nodes. We will
show that the zero mode has the lowest allowedn. Since it is not degenerate, the rest of
the spectrum ofM, i.e. the spectrum ofM′, must be positive.
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Now, let us provide some details of the zero mode. Its origin is the translational
invariance in our problem. To identify it explicitly, differentiate (22) once and find

MdXτ
dτ

= 0. (37)

Thus,Ẋτ is an eigenfunction ofM with zero eigenvalue, so that it is clearly the zero mode.
Next, to show that it is also absent from the first term in (33), we note that sgn(Xτ )|Xτ |(N−1)

is actually dV (X)/dX. Therefore, ifχ̂τ is dXτ/dτ , then the integrand is a perfect derivative
of a periodic function and this term vanishes. The conclusion is that the zero mode is
completely absent from the quadratic from (33). Thus, for the Gaussian approximation to
be valid this mode has to be treated separately. The standard technique to deal with this
situation is the method of collective coordinates [4]. The symmetry here is translational
invariance of (21) and (22), which implies that the particle (in the mechanical analogy) can
be at the pointX0 at any other timeτ0 ∈ [0, 1]. Thus, there is a one-parameter family of
solutions, labelled byτ0, all of which satisfy the differential equation (22) and the constraint∫ 1

0 dτχτ = 0. Indeed, the zero modėXτ can be recognized as the difference betweenXτ

andXτ−τ0, to lowest order inτ0. Using this parameter instead of the amplitude ofẊτ in
the normal mode expansion ofχ̂ enables us to sum over this component ofχ̂ , even though
it is entirely absent from the weights.

Having made these remarks, we may now evaluate the Gaussian integral overχ̂ . In
principle, we would expand̂χ in terms of all the eigenfunctions ofM, except the zero
mode (associated with the indexn = 0 below). Therefore,χ̂τ = ∑

n6=0 anχ̂
(n)
τ . In the

collective coordinates method [4], the integral over the functionsχ̂ is replaced by integrals
over τ0 (which ‘replaces’a0) and {an|n 6= 0}. The Jacobian of this transformation is
simply 〈Ẋ|Ẋ〉1/2, which is proportional toX0 and carries the solex dependence here. Now,
the integrationτ0 is trivially unity. Meanwhile the integration over the rest of the modes
({an|n 6= 0}) has already been discussed, in connection with the first remark above. Nox

dependence appears here. Finally, the integration overµ̂ leads to (36). Summarizing, the
Gaussian integrals yield a prefactor for (31) proportional toX

(2−N)
0 . Using (29), we have

our final result:

ln8N(x) ∼ −SNx2/N − N − 2

N
ln(x)+ O(1) (x � 1) (38)

where, explicitly,

SN = 4π

3N(N + 2)

(
0(1/N)

0((N + 2)/2N)

)2 {
(N + 2)0((N + 1)/2)

2
√
π

}2/N

. (39)

Although there are some technical limitations to our derivation for theN = 2 case (e.g.
equation (26)), they can be circumvented, so that this result is in fact valid forN > 2.

4. The scaling function for smallx

To arrive at8N in the other limit,x � 1, we will use a very different approach, which we
will first sketch briefly. As in thex � 1 case, we are only able to compute the two leading
terms in ln8N , so that all proportionality constants will be dropped. Unlike in the previous
section, we will first compute the asymptotic behaviour ofGN(λ; T ) for largeλ and then
rely on a saddle point method to find8N . Our starting point is the unscaled version of
GN(λ; T ) given by (9). So first consider the numerator of the right-hand side, but without
the constraint

∫ T
0 dt ψt = 0, and define

α ≡ λ/T . (40)
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Then, ∫
D[ψ ] exp−

∫ T

0
dt [ 1

2ψ̇
2
t + α|ψt |N ] ∝

∑
n

e−E(N)n T (41)

whereE(N)n is the (n + 1)th eigenvalue of the evolution operator which consists of the
quantum-mechanical Hamiltonian for a particle moving in the potentialα|ψ |N . As T → ∞,
the ground state dominates, leading to the Feynman–Kac result [5] that the right-hand side
of (41) can be replaced by e−E(N)0 T , with only an exponentially small error. Now, the
dependence ofE(N)0 on α can be extracted through dimensional analysis alone, sinceα has
dimensions of inverse time to the power1

2(N + 2), while E(N)0 itself has dimensions of

inverse time. Thus, we haveE(N)0 ∝ α2/(N+2) and arrive at the the leading behaviour of the
path integral in (41), forT � α−2/(N+2).

Having outlined the essential idea, let us now be more systematic. First, to implement
the constraint

∫ T
0 dt ψt = 0, we write the usual integral representation for a delta function.

Next, instead of normalizing the path integral as in (9), we useG2(λ; T ) as the denominator.
This avoids the complications from theα = 0 system, which lacks a discrete spectrum for
a simple application of the Feynman–Kac result. On the other hand,G2(λ; T ) is known
explicitly (see (4)), so that the ratioGN/G2 is essentially our goal. Thus, we consider,
from (9),

GN(λ; T )
G2(λ; T ) =

∫ ∞
−∞ dω

∫ D[ψ ] exp− ∫ T
0 dt [ 1

2ψ̇
2
t + α|ψt |N + iωψt ]∫ ∞

−∞ dω
∫ D[ψ ] exp− ∫ T

0 dt [ 1
2ψ̇

2
t + αψ2

t + iωψt ]
. (42)

Of course, the presence of iωψ is rather unusual. However, as we will see, its sole effect is
to give a non-trivial prefactor toG in this limit. We first focus on the denominator, which
consists of simple Gaussian integrals. Without the constraint, the iωψ term is absent, so
that we may use results from the quantum mechanics of a simple harmonic oscillator to
obtainG2 ∼ e−√

α/2T . Comparing with (4), we see that this is indeed the leading behaviour.
The next leading term, contained in the prefactor, would arise from the constraint. In this
case it is easily dealt with by definingψ ′

t = ψt + iω/2α and factorizing the integrand. The
ψ ′ integral gives us the previous asymptotic form, while integration overω produces the
desired prefactor:

√
α/T . For theN 6= 2 case, there is no similar luxury of factorization,

but, by reinterpreting the above steps, i.e. computing the functional integral with the iωψ

term as finding anω-dependent ground-state energy,E
(2)
0 (α, ω), a way forward can be seen.

Thus, we write∫
D[ψ ] exp−

∫ T

0
dt [ 1

2ψ̇
2
t + αψ2

t + iωψt ] ∝
∑
n

e−E(2)n (α,ω)T ≈ e−E(2)0 (α,ω)T (43)

with

E
(2)
0 (α, ω) = E

(2)
0 (α, 0)+ ω2/4α. (44)

It is now clear that the integral overω gives the prefactor. Another route to the understanding
of (44) is to consider adding a real, linear potential,hψ , first. Clearly, the ground-state
energy is well defined, allowing us to arrive at the above result by analytic continuation to
pure imaginaryh.

Generalizing this approach to theN 6= 2 case, we write the numerator of (42) as∫ ∞

−∞
dω

∑
n

e−E(N)n (α,ω)T ≈
∫ ∞

−∞
dω e−E(N)0 (α,ω)T . (45)
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Unlike theN = 2 result (44),E(N)0 (α, ω) does not have a dependence onω which terminates
at second order. It is clear, however, by expanding the exponentials in the analogue of (43)
for generalN , that it has the general form

E
(N)

0 (α, ω) = ε
(N)

0 (α)+ ω2ε
(N)

1 (α)+ ω4ε
(N)

2 (α)+ · · · . (46)

So sinceω has dimensions of time to the power−3/2, ε(N)m (α) has dimensions of time to
the power(3m− 1). Therefore,

ε(N)m (α) = ε(N)m (1)α−2(3m−1)/(N+2). (47)

To see that only the first two terms in this expansion are relevant, recall that the
integrand depends onE(N)0 (α, ω)T only. Changing the variable of integration fromω
to ω′ ≡ T 1/2α−2/(N+2)ω, so that the quadratic term in (46) is independent ofα and T ,
we see that them > 2 terms are of order 1/[α2/(N+2)T ]m−1. Since this is proportional to
1/µ2(m−1)/(N+2) and we are interested in theµ � 1 limit, we are justified in neglecting all
terms beyondm = 1. Focusing on the first two terms in (46), we write

E
(N)

0 (α, ω)T = Eα2/(N+2)T + E ′(ω′)2 + · · · . (48)

Note thatE ≡ ε
(N)

0 (1) is just the zero point energy of a particle in the potential|ζ |N and is,
therefore, positive. Meanwhile, hadω been pure imaginary,E(N)0 would certainly have been
lowered, implying thatE ′ is also positive. We note, parenthetically, that it can be estimated
in our approach, since it is just the correction to the ground-state energy in second-order
perturbation theory. HavingE ′ > 0, the integral overω′ is well defined and provides a
simple constant.

Inserting (48) into (45), we have∫ ∞

−∞
dω e−E(N)0 (α,ω)T ∝ α2/(N+2)T −1/2 exp[−Eα2/(N+2)T ]{1 + O(α−2/(N+2) T )}. (49)

Using this, together with a similar expression for the denominator,∫ ∞

−∞
dω e−E(2)0 (α,ω)T ∝ α1/2T −1/2 exp[−α1/2T/

√
2] (50)

we find

GN(λ; T )
G2(λ; T ) ∝ λ2/(N+2)

λ1/2

T −2/(N+2)

T −1/2

exp[−Eλ2/(N+2)T N/(N+2)]

exp[−λ1/2T 1/2/
√

2]
{1 + O(λT N/2)−2/(N+2)} (51)

where we replaced theα’s by the originalλ/T ’s. Finally, using the exact expression (4)
for G2, we arrive at

GN(λ; T ) ∝ λ2/(N+2)T N/(N+2) exp[−Eλ2/(N+2)T N/(N+2)]{1 + O(λT N/2)−2/(N+2)}. (52)

Alternatively, we can write it in terms of the scaling formgN(µ) introduced in section 2:

gN(µ) ∝ µ2/(N+2) exp[−E(µ/N)2/(N+2)]{1 + O(µ−2/(N+2))}. (53)

This is the form whichGN or gN takes in theµ � 1 limit. It should be contrasted with
the approach used in the last section, which was justified in the regime whereµ � 1. Thus
the results of the last section are complementary to those derived here.

All that remains to find8N(x) is to take the inverse Laplace transform of (53):

8N(x) ∝
∫ i∞

−i∞
dµµ2/(N+2) exp[−E(µ/N)2/(N+2) + µx|g′

N(0)|]. (54)

Defining ν = x(N+2)/Nµ gives, for the exponent in (54),

x−2/N {−E(ν/N)2/(N+2) + ν|g′
N(0)|} (55)
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so that the integral may be evaluated by steepest descent ifx � 1. SinceE > 0, there is
an extremum at a real positive value ofν, which is of order unity. Thus, the corresponding
value ofµ is of orderx−(N+2)/N � 1, justifying all the approximations we made above,
based onµ → ∞. Carrying through the integration gives the asymptotic behaviour:

ln8N(x) ∼ −KNx
−2/N − N + 3

N
ln(x)+ O(1) (x � 1) (56)

where KN is a positive constant which depends on some explicitly known functions of
N and onE , the ground-state energy of a quantum-mechanical particle of unit mass in a
potentialV (ζ ) = |ζ |N . Unfortunately, the last item is not known for generalN , so that
we must be content with just an implicit expression. Nevertheless, conjecturing that it is
monotonic inN , we can place a bound on it,π2/8, which is the result forN → ∞, where
the particle is confined to|ζ | 6 1 by an infinite square well. SinceE is 1/

√
2 for N = 2,

it is fairly well bounded numerically even though its precise value is unknown. Finally, we
note that (56) reduces to the known result given in [1] for theN = 2 case.

5. Conclusions

To summarize, we have generalized the study of width distributions of a Gaussian path
(random walk) to include moments higher than two. Unlike theN = 2 case, we are
unable to find closed form expressions for the Laplace transform of these distributions.
Nevertheless, we can compute their asymptotic behaviour, for both large and small
arguments: equations (38) and (56). Here, we conclude with a few remarks.

First, note that, though theaveragesof the evenN > 2 moments are trivially related
to 〈w2〉, their distributionsare not so simple. In particular, we believe that there is no way
to obtain the general8N or GN from theN = 2 result. They contain different information
about the paths. For example, the following two paths lead to the samew2 but distinct
w(N): (i) ψt = 1 for 0< t < T/2, −1 for T/2 < t < T and 0 elsewhere; compared with
(ii) ψt = 2 for 0< t < T/8, −2 for 7T/8< t < T and 0 elsewhere. Thus, only paths with
short excursions to largeψ ’s, which are presumably rarer, contribute to the largex tail of
8N with largeN . Presumably, this is reflected by equation (31).

Second, we have seen, from Feynman’s path-integral formulation of quantum mechanics,
that the Laplace transform of the distributions for theN th absolute central moments of
random walks are intimately related to the propagation kernels of a quantum-mechanical
particle confined to a potential of the formV (ζ ) = |ζ |N . As a result, the behaviour of
8N(x) in the largex limit should be controlled by the properties ofGN(λ) for small λ.
We note that the paths which dominateGN here are the ones near the ‘classical path’
(22). Meanwhile, for the opposite limit, smallx and largeλ, the dominant contribution to
GN comes from the ground state, which is, in a sense, ‘the furthest from classical’. It is
interesting that these opposing aspects of the quantum mechanical problem find their way
into the opposite ends of the asymptotics.

Third, let us recall that these distribution functions are supposedly universal, in the
language of a renormalization group. In particular, our results represent new features of
the class of simple random walks, i.e. a massless Gaussian fixed point (also referred to in
the dynamics of interfaces as the Edwards–Wilkinson [6] universality class). As universal
quantities, the distribution functions should capture the large-scale properties of a one-
dimensional object stabilized by non-zero tension, independent of the microscopics of the
system. Thus, we may expect the same behaviour from an interface between different
phases, a polymer ind = 2, or a simple model of random walk. The last of these is
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particularly easy to study, using Monte Carlo simulations. In this connection, we should
caution the reader on theN → ∞ limit. Simulations necessarily deal with systems with
finite L. To observe universal properties, we must letL approach infinity. However, this
does not commute withN → ∞, so the results above should be used with some care if
large values ofN were to be used in the investigation.

Finally, it is natural to speculate on further generalizations of this study. Obvious
candidates are interfaces in higher dimensions [7] and those controlled mainly by curvature
terms [8]. Both will involve single component fields. On the other hand, we could
investigate random walks imbedded in higher dimensions, such as physical polymers in
three-dimensional solutions, where the periodic boundary condition would correspond to
ring polymers. In this case, we would need multi-component fields and an appropriate
generalization of the concept of ‘width’. In the simplest scenario,P(w2) will be nothing
more than products of the distribution in [1]. However, it is clear thatPN will be much
more interesting! While the formulation of any of these problems is trivial, we anticipate
that the analysis itself will be be rather difficult.
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